Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

W. G. Piyal Ariyananda and Richard E. Norman*

Chemistry Department, CNSB-210, University of Louisiana at Monroe, Monroe, LA 71209, USA

Correspondence e-mail: rnorman@ulm.edu

Key indicators

Single-crystal X-ray study
$T=100 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$
R factor $=0.063$
$w R$ factor $=0.145$
Data-to-parameter ratio $=33.4$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

Tris(2-ammonioethyl)amine tribromide

The title compound, $\left[\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{3}\right)_{3}\right] \mathrm{Br}_{3}$, is a salt of a triprotonated tetramine. The tertiary amine N atom sits on a threefold axis, as do the three bromide anions. Each of the primary amines is protonated, while the tertiary amine is not protonated. The compound is isostructural with the chloride and the perchlorate analogs.

Comment

During an attempted synthesis of $\left[\{\mathrm{Ni}(\text { tren }) \mathrm{Br}\}_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}$, where tren is tris(2-aminoethyl)amine, several tan crystals were noted amongst the predominantly purple product. These tan crystals proved to be the title compound, (I).

The title compound is isostructural (it has the same ordering of the cations and anions within the unit cell) with the analogous chloride (Ilioudis et al., 2000) and perchlorate (Burgess et al., 1991) salts. The tertiary amine N atom (N2) sits on a threefold axis, as do the three bromide ions. If the tertiary amine nitrogen is considered to be the origin, in all three structures the anions are located along the cube diagonal threefold axis at roughly the same positions: $0.28,0.52$ and 0.79 (expressed as a fraction of the diagonal). Intriguingly, for the chloride analog (Ilioudis, et al., 2000), all three chloride ions were reported to hydrogen bond to the alkylammonium groups [the $\mathrm{N}-\mathrm{Cl}$ distances are 3.176 (1), 3.223 (1) and 3.243 (2) Å], while for the perchlorate analog (Burgess et al., 1991) only two of the perchlorate ions were reported to hydrogen bond to the alkylammonium groups [the $\mathrm{N}-\mathrm{O}$ distances are 2.907 (5) and 3.016 (5) \AA, while the non-bonded $\mathrm{N}-\mathrm{O}$ separation is 3.225 (6) \AA]. For the title compound, the three $\mathrm{N}-\mathrm{Br}$ distances are 3.296 (5), 3.359 (4) and 3.395 (5) A.

The distances within the H_{3} tren trication are the same, within experimental error, for all three structures.

Experimental

$\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]\left(\mathrm{ClO}_{4}\right)_{2}(0.1839 \mathrm{~g}, 0.5048 \mathrm{mmol})$ was dissolved in 15 ml of $\mathrm{CH}_{3} \mathrm{CN}$, resulting in a blue solution. Tris(2-aminoethyl)amine $(0.084 \mathrm{ml}, 0.56 \mathrm{mmol})$ and $\mathrm{HNEt}_{3} \mathrm{Br}(0.0925 \mathrm{~g}, 0.508 \mathrm{mmol})$ were added to the solution, giving a white powder under a light blue solution. Methanol was added dropwise until the powder dissolved. The resultant blue-purple solution was placed in a desiccator, which

Figure 1
(1) $\mathrm{Br} 2^{\prime}$

ORTEP view of the H_{3} tren Br_{3} trication, with displacement ellipsoids drawn at the 50% probability level.

Figure 2
ORTEP view, showing the hydrogen bonding of one H_{3} tren ${ }^{3+}$ trication with seven bromide ions.

©
Figure 3
ORTEP view, showing one H_{3} tren ${ }^{3+}$ trication (top) interacting with Br1, and three H_{3} tren ${ }^{3+}$ trications interacting with Br 2 and Br 3 (bottom).
contained a beaker of conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$. Purple and tan crystals appeared after a few days. The tan crystals proved to be the title compound.

Crystal data

$\mathrm{C}_{6} \mathrm{H}_{21} \mathrm{~N}_{4}{ }^{3+} \cdot 3 \mathrm{Br}^{-}$
$M_{r}=388.97$
Cubic, $P 2_{1} 3$
$a=11.038$ (2) £
$V=1344.8(4) \AA^{3}$
$Z=4$
$D_{x}=1.921 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $\mathrm{K} \alpha$ radiation

Data collection

Nonius KappaCCD diffractometer (with Oxford Cryostream)
ω scans with κ offsets
Absorption correction: multi-scan
(HKL SCALEPACK;
Otwinowski \& Minor, 1997)
$T_{\text {min }}=0.164, T_{\text {max }}=0.218$
14942 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>3 \sigma\left(F^{2}\right)\right]=0.063$
$w R\left(F^{2}\right)=0.145$
$S=1.02$
1335 reflections
40 parameters
H -atom parameters not refined

Cell parameters from 1167
reflections
$\theta=2.5-35.5^{\circ}$
$\mu=9.00 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Fragment, \tan
$0.27 \times 0.22 \times 0.17 \mathrm{~mm}$

1598 independent reflections
1335 reflections with $I>3 \sigma(I)$
$R_{\text {int }}=0.042$
$\theta_{\text {max }}=35.5^{\circ}$
$h=-18 \rightarrow 18$
$k=-12 \rightarrow 12$
$l=-12 \rightarrow 12$
$w=1 /\left[\sigma^{2}\left(F_{o}\right)+0.00331 \mid F_{o}{ }^{2}\right]$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.73 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-1.36$ e \AA^{-3}
Absolute structure: Flack (1983),
1338 Friedel pairs
Flack parameter $=0.0586(6)$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{N} 1-\mathrm{C} 1$	$1.501(6)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.512(7)$
$\mathrm{N} 2-\mathrm{C} 2$	$1.468(5)$		
$\mathrm{C} 2-\mathrm{N} 2-\mathrm{C} 2^{\mathrm{i}}$	$109.1(3)$	$\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 1$	$112.3(4)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$110.7(4)$		

Symmetry code: (i) z, x, y.

Table 2
Hydrogen-bonding geometry ($\mathrm{A}^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{Br} 1$	0.95	2.54	$3.296(5)$	136
$\mathrm{~N} 1-\mathrm{H} 2 \cdots \mathrm{Br} 3$	0.95	2.76	$3.359(4)$	122
$\mathrm{~N} 1-\mathrm{H} 3 \cdots \mathrm{Br} 2$	0.95	2.81	$3.395(5)$	121

Symmetry codes: (ii) $x-\frac{1}{2}, \frac{1}{2}-y,-z$.
H atoms were treated as riding in idealized positions $(\mathrm{C}-\mathrm{H}=$ $0.95 \AA$), with $U_{\text {iso }}=1.2 U_{\text {eq }}$ of the parent atom. While the compound itself is not chiral in solution, the crystal structure was determined (Flack, 1983). The deepest hole is located $0.053 \AA$ from atom N2. The orientation is away from where one might expect a H atom (that is, on the C 2 side, toward Br 2 not toward Br 1).

Data collection: COLLECT (Nonius, 2000); cell refinement: DENZO and SCALEPACK (Otwinowski \& Minor, 1997); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: teXsan for Windows (Molecular Structure Corporation, 1997-1999); software used to prepare material for publication: teXsan for Windows.

We thank Frank Fronczek for data collection and the Louisiana Board of Regents Support Fund for financial support.

References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.
Burgess, J., Al-Alousy, A., Fawcett, J. \& Russell, D. R. (1991). Acta Cryst. C47, 2506-2508.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.

Ilioudis, C. A., Hancock, K. S. B., Georganopoulou, D. G. \& Steed, J. W. (2000). New J. Chem. 24, 787-798.
Molecular Structure Corporation (1997-1999). teXsan for Windows. Version 1.06. MSC, 9009 New Trails Drive, The Woodlands, TX 77381, USA.

Nonius (2000). COLLECT. Version 20000706. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter \& R. M. Sweet, pp. 307-326. London: Academic Press

